資料ダウンロード
熱変形を考慮した筐体設計およびレンズ設計の最適化
最適設計支援ツール『Optimus』によるAnsysおよびCODE Vの複合領域最適化

CAEのあるものづくり Vol.14|公開日:2011年4月
目次
- はじめに
- 解析モデルと初期設計
- 統合環境のフローチャート
- 最適化問題
- 筐体形状およびレンズ形状の最適化
- まとめ
はじめに
光学設計では、シミュレーションを用いたレンズ設計が一般的ですが、モデルとして定義される形状や特性は標準状態での形状や特性を用いることが多く、現実の製品使用状態のものとは異なる点が多々存在します。製品全体として考えた場合、単にレンズ性能だけを考慮するのではなく、レンズが周囲から受ける影響なども考慮する必要があります。
例えば、複写機を想定した場合、使用条件下では光源の発熱のため筐体内の温度が通常より高温の環境となることが予想されます。特に機器の高密度化/密封化が進むことで、レンズ周辺の熱膨張による変形は無視できず、標準状態での設計値と比べ製品の性能が低下することが予測されます。
現在の光学系シミュレーションでは光学要素に対する環境オプションは用意されていますが、筐体の熱変形から受けるレンズの位置ズレなどを考慮するためには、別途“流体/構造シミュレーション”との連携が必要となります。しかしながら“光学シミュレーション”と“流体/構造シミュレーション”を連携することは、それぞれのデータフォーマットなどが異なるため容易ではありません。更に、複数のソフトウェアの操作や得られたデータの整理などより多くの必要作業が発生します。
このような課題に対し、最適設計支援ツール『Optimus』による統合環境の構築および複合領域の最適化をご提案します。
解析モデルと初期設計
本事例では複写機の例を用いて、筐体形状とレンズ形状の最適化についてご紹介します。この解析ではAnsysによる流体解析/熱応力解析を実施し、レンズなど光学要素の設計値に対する位置ズレを算出します。この位置ズレ量を光学設計ツールCODE V上のモデルに反映し、熱変形後のレンズ性能の評価およびレンズ形状の最適化を実施します。Optimus上でAnsysとCODE Vの統合環境を構築することで一連の解析を自動実行することができます。また、それぞれのソフトウェア内で定義されたパラメータを変更しながら最適化を実施することが可能になります。
2.1 解析モデル
Ansysの解析モデルを図1、解析条件を表1に示します。このモデルはポリゴンミラー、レンズ1 、レンズ2 、ミラーを含む光学系とこれを支持する筐体から構成されており、筐体は4箇所の固定部を持ちます。Ansysでは発熱源の影響による筐体の熱変形を解析し、光学要素の位置ズレ量を算出しています。解析結果の全変形量を図2に示します。最適化で考慮する形状パラメータは固定部の筐体端面からの距離とします。流体/熱応力解析を通して実行した1回の解析時間は約15時間です。
CODE Vの解析モデルを図3に示します。このモデルは光学系のみをモデル化しており、Ansysから算出された位置ズレ量を反映し、熱変形後の評価やレンズ形状の最適化を行います。本事例では熱変形前後における3つの画角のRMSスポット径を光学性能の評価指標としています。最適化で考慮する光学パラメータは収差補正のウェイトおよびレンズ曲率半径とします。1回の解析時間は約5秒です。
図1 Ansys 解析モデル
表1 解析条件
図2 Ansys 全変形量
図3 CODE V 解析モデル2.2 初期設計
初期設計におけるスポットダイアグラムを図4に示します。初期設計は筐体の熱変形を考慮していない設計のため…
関連情報
関連する解析事例
MORE関連する資料ダウンロード
MORE-
はんだ濡れ上がり形状予測解析
~Ansys LS-DYNAで電子機器の信頼性向上に貢献~
-
Ansys ユーザーのための PyAnsys 完全ガイド
Pythonで加速するCAEワークフロー
-
共振回避だけで終わらせない実レベルの振動解析
~Ansys Mechanicalで実現する高度な製品開発~
-
吸入器内の粒子挙動を可視化する
~薬剤送達効率向上に向けた解析~
-
医薬品バイアルの温度挙動解析
~保管環境の影響把握と品質維持に向けた可視化アプローチ~
-
そのFDTD計算、もっと速くできる!Lumerical+GPUでフォトニクス解析に革命を
-
Ansys TwinAIを用いたFusionモデリングのご紹介
-
構想設計で解析を実行しフロントローディング
~Ansys Discovery Premiumへのアップグレードご提案~

