CYBERNET

Multiscale.Sim 論文紹介

数値材料試験とニューラルネットワークを用いた一方向CFRPの界面接着強度の予測

  • 発表時期:2022年
  • 学会/論文誌名:日本複合材料学会誌

内容

When analyzing the fracture behavior of unidirectional carbon fiber-reinforced polymer (CFRP), it is important to consider the interfacial strength between the reinforcing fiber and the base resin, and the strength of the base resin. Therefore, the adhesiveness of the base material and the compatibility with the sizing material and fibers are important design parameters in the development of CFRPs. However, a quantitative method for estimating the interfacial strength and the strength of the base resin has not been established. In this study, we propose a method to evaluate the interface strength of unidirectional CFRPs by creating learning data through a series of numerical material tests and by constructing a neural network that outputs the interface strength based on a homogenization method from the results of off-axis tensile tests. We adopt a general feed forward neural network whereby parameters are learned by employing a backpropagation method. The interfacial strength and the matrix resin strength is predicted and evaluated from the results of the off-axis tensile test to demonstrate the effectiveness of this system.


Ansys、ならびにANSYS, Inc. のすべてのブランド名、製品名、サービス名、機能名、ロゴ、標語は、米国およびその他の国におけるANSYS, Inc. またはその子会社の商標または登録商標です。その他すべてのブランド名、製品名、サービス名、機能名、または商標は、それぞれの所有者に帰属します。本ウェブサイトに記載されているシステム名、製品名等には、必ずしも商標表示((R)、TM)を付記していません。 CFX is a trademark of Sony Corporation in Japan. ICEM CFD is a trademark used by Ansys under license. LS-DYNA is a registered trademark of Livermore Software Technology Corporation. nCode is a trademark of HBM nCode.