CYBERNET

信頼性 (Reliability)

信頼性 (Reliability)とは、システムやモデルが期待された機能を一定期間にわたって一貫して正確に実行する能力を指します。
機械学習においては、予測の安定性、再現性、堅牢性、不確かさの定量化などが重要な評価指標となります。

CAEサロゲートAIにおける信頼性の重要性と実践的アプローチ

CAEのサロゲートAIでは、信頼性はモデルの予測が物理法則に矛盾せず、設計空間全体で一貫した結果を提供できるかどうかを意味します。特に安全性が重要な構造解析や熱流体解析において、サロゲートモデルの予測範囲の限界を明確に示し、不確かさを定量化することが必須です。ベイズ最適化やアンサンブル学習などの手法を用いて予測の信頼区間を推定し、エンジニアが適切なリスク評価を行えるようにすることがサロゲートAIの重要な機能となります。

お問い合わせ

サイバネットシステム株式会社
製品お問い合わせ窓口

AI-info@cybernet.co.jp

3次元の形状生成AI​による「シミュレーションの高速化」や「形状の最適化」に関するご質問・ご相談などございましたら是非お問い合わせください

お問い合わせフォームはこちら