ANSYS Mechanicalに搭載されたGPU機能とベンチマーク結果

活用が広がるGPU

GPU(Graphics Processing Unit)はその名が示すとおり従来はグラフィックスに特化した演算装置でしたが、大量の演算を並列に処理できる特長を活かしてCAEの計算パフォーマンスを向上させる取り組みが行われてきました。ANSYS Mechanicalは2010年にリリースされたVer13.0よりGPUに対応しています。

本稿では、ANSYSの標準ベンチマークテストを利用し、GPUにより実際どれだけのパフォーマンスが得られるかを検証した結果をご紹介いたします。

CPUコア数が少ないときにGPUが威力を発揮

本ベンチマークでは9種類の標準ベンチマークモデルを用意し、ANSYS Mechanical APDL18.1でベンチマークを実施しました。比較検討したプロセッサは@CPU only、ACPU + NVIDIA Tesla K40c、BCPU + NVIDIA Quadro GP100です。

CPUは2、4、8、16、32、44コアで計算時間を計測し、CPU onlyの2コアで計算した時間を基準とした@〜Bのスケーラビリティをまとめました。(このグラフは標準ベンチマークテスト9ケースの平均値を示しています)

CPU onlyの場合、32コア使用時に6.22のスケーラビリティが得られていますが、CPU+K40cであれば、16コア使用時に5.65 、CPU+GP100であれば、16コア使用時に6.33に達しています。

このグラフの黄枠で囲んだ箇所、すなわちCPUコア数が少ない場合に特にGPUの威力が発揮されることがわかります。CPUが4コア以下ならばGPUを追加するだけで2倍以上の高速化が望める点は有効であると考えられます。

一方で、十分なCPUコア数がある場合(このグラフでは32コア以上)は、GPUを追加してもパフォーマンスの向上が見られなくなっています。このことから、GPUは常に有効な手段ではなく、状況に応じた選択が求められると考えられます。


ベンチマークテストの詳細はこちらの資料をご覧ください。資料ではベンチマークテストごとのGPUパフォーマンスの他、ストレージパフォーマンス、ANSYS Mechanicalのバージョン間のパフォーマンスも掲載しております。

PDF資料のダウンロードページへ

関連セミナー

CONTACT US

ご購入・レンタル価格のお見積り、業務委託についてはこちら。

お問い合わせ

ページトップへ