

補足:「作って壊す…」を作った背景

- 初学者が材料力学(+FEM)に慣れ親しむ手助けに…
- 学生も若手も 材料力学を十分に使いこなせていない?
 - 公式を知っていることと、それを活用できることは別物
 - 従来の大学教育では活用法を教えてこなかった
- ◆ 身近な生活・感覚と専門知識・概念を断絶なくつなぎたい
 - ・日常の延長としての実体験がなければ何も始まらない *小さな失敗(試行錯誤)を効率よく積み重ねる
 - 小学校の図画工作から始めれば良いのでは?
 - その後、必要に応じて材料力学の理論を...
 - ⇒ 発泡スチロールで力学的構造物を作って壊す

補足:材料力学の位置づけ

(各種離散化)

学問としての	学習の主な	物体の取り扱い方		7/2/
名称	対象者	形状	変形	コメント
<mark>質点</mark> の力学	高校 (この10年程は剛 体の一部を含む)	なし (点, 0-D)	しない	並進運動 力のつり合い 質点の力学 質量 に加えて
<mark>剛体</mark> の力学 (工業力学)	大学 理系教養 機械/建設系 1年	あり (multi-D)	しない	+ 回転運動 "クルッ" ・ + カのモーメントのつり合い + 慣性モーメント
· <mark>材料力学</mark> (構造力学)	機械/建設系 2年	線的 (1-D)	する (微小)	実学:構造設計者の心の支え 仮定 + 剛体の力学 + 高校数学
<mark>弾性体</mark> の力学 (連続体力学)	機械/建設系 修士	あり (Multi-D)	する	CAEの基礎理論(テンソル) 理解略可(<mark>現象理解は必須</mark>)
有限〇〇法				CAE:微分方程式の近似解法

使い方よりもモデル化が大切

目次 5

- はじめに(1.5h)
 - 背景と目的
 - 基本事項(7)ずみ、応力、応力ー(7)ずみ関係)の確認
 - 直接引張実験の紹介
- 実験1:単純支持はりの4点曲げ(2.5h)
 - まずは、はりの曲げに関する予習/復習から
- 実験2:たわみにくいカタチの設計(2h)
 - 試作・実験を繰り返すことで設計
 - 事後解析(材料力学&FEM)
- おわりに

注意: 先読みすると、ネタバレします…

- ◆ 付録
 - 直接引張実験, FEMの超概略, 脱線ネタ

カ/変形による構造形状の呼び分け

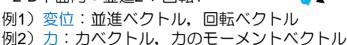
- ◆ (微視視点?:体,塊(3-D):【中実(ソリッド)】)
- メゾ視点:構造物の多くは線と面でできている
 - 線材(1-D)←材料力学(前提:長細い)の守備範囲
 - *引張 + 低圧縮:【棒 (ロッド)】
 - *曲げ: 【はり(ビーム)】
 - *曲げ+高圧縮:【柱 (カラム) 】ピラー
 - *ねじり:【軸(シャフト)】
 - 面材(2-D) ← 弾性体の力学の一部
 - *引張:【膜 (メンブレン)】
 - *曲げ:【板 (プレート)】
 - *引張+圧縮+曲げ+ねじり: 【殻(シェル)】
- ◆ 巨視視点:例) 荒波下のタンカー【はり】 √

再確認:モノづくりのための材料力学 21

- ◆ 順問題として(Analysis): 大雑把にモノを見極める
 - 手計算でササッとアタリをつける*例)東京スカイツリーは直径60m鋼管の片持ちはり
 - ・詳細なCAE解析の結果に、納得する *例)オープンカーはルーフがないのに重い
- ◆ 逆問題として(Synthesis): 力学的機能を分離・明確化する
 - 明示的に切り離して、モデル化しやすく or 安全に
 - *例) 熱応力を回避, 目地切
 - *例) 橋梁やビル間のExpジョイント

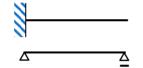
まずは【力のモーメント】の内訳から

【はり】というモデル化(3-Dの1-D化)に対応して… 問)ある点に,力のみでモーメント M だけを掛ける道具を作ってください



軸線上における点の自由度と境界条件

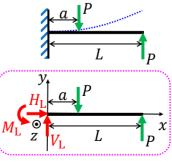
23


【白中度】

3-D空間内:並進3 + 回転32-D平面内:並進2 + 回転1

- 1. 変位の与え方(2-D平面内における代表的な支持条件)
 - 固定
 - ・ピン
 - ローラ

- 2. 力の与え方(代表的な外力)
 - はりへの垂直力
 - 偶力によるモーメント



自由体と反力

- 【自由体】:注目域を系として仮想的に切り出したもの
- 【反力】:変位規定時に系の外から内に働く力(妄想)
 - 符号の定義は座標系に合わせておくと便利
 - 求めるには自由体に関する力のつりあい条件が必要

例) 片持ちはりの反力3つを求める

- 座標系と力の正方向の定義
 - x 方向の力のつりあい $H_{\rm L}=0$
 - y 方向の力のつりあい $V_L - P + P = 0 \Rightarrow V_L = 0$
 - * z 方向の力のモーメントつりあい $M_L Pa + PL = 0 \Rightarrow M_L = P(L a)$

