サイバネットシステム株式会社 2019年11月22日

-電波伝搬基礎から設計まで-

ミリ波帯用電磁波透過材、遮へい材、吸収材の考え方と設計法基礎

——————————————————————————————————————							
 1. ミリ波レーダ、透過材、遮へい材、吸収材 2. 透過材、遮へい材,吸収体設計に必要な電波伝搬基 2.1 平面波の伝搬 2.2 伝送線路と電気回路の基礎行列、層状媒質の 等価回路 3. 電磁波透過材、遮へい材、吸収材の構成材料 3.1 透過材、遮へい材、吸収材構成材 	、 使 						
 3.2 導電材の比誘電率 3.3 人工誘電体 4. 透過材の考え方と設計法 4.1 単層構造の透過特性、全透過条件 4.2 層状構造の全透過構造 4.3 斜め入射における全透過条件 演習(1) 単層構造の反射・透過特性と全透過 演習(2) 誘電体/周期穴金属板/誘電体の 全透過構造 	 5. 電磁遮へいの考えかたと設計法 5.1 電子機器筐体と電磁遮へい、電磁遮へい材の モデル 5.2 導電材の遮へい特性 5.3 各種の遮へい手法 5.4 遠方界と近傍界 演習(3) 導電材の遮へい特性 6. 電波吸収体の考え方と設計法 6.1 各種の電波吸収体 6.2 単層構造電波吸収体 6.3 2層構造電波吸収体 演習(4) 単層構造電波吸収体の吸収特性 						

EMCプラザ 代表 兵庫県立大 名誉教授 畠山賢一

1. ミリ波レーダ、透過材、遮へい材、吸収材

ミリ波レーダと透過材、遮へい材、吸収体

	項目	│仕様等
See 8	レーダ方式	FMCWなど
	中心周波数	76GHz、77~81GHz
	送信電力	10mW以下
	偏波	45°直線偏波、または円偏波
	最大検知距離	100m~120m
回路カバーアンテナカバー	ビームスキャン	±45°程度、電子式、または機械式
	消費電力	0. 5W程度

ミリ波レーダ用 透過材、遮へい材、吸収体

インフラ用 電磁干渉防止吸収体/遮へい材

2. 透過材、遮へい材, 吸収体設計に必要な電波伝搬基礎

2.1 平面波の伝搬

- 平面波:自由空間(無限に広い真空の空間)を伝搬する電磁波
 - ・電界Eと磁界Hが対になり伝搬
 - ・電界E、磁界H、伝搬方向は互いに直交

・EとHの振幅比は伝搬する媒質により定まる一定値(E/H=Z_w-波動インピーダンス)

金属体配列密度N大 \Rightarrow 電気ダイポール密度 m_e 増加 \Rightarrow 分極P増加 \Rightarrow 比誘電率実数部 ε_r , '増加

金属体充填材の特性 人工誘電体(高誘電率誘電体)→導電材のイメージ

T.Tsutaoka, T.Kasagi, S.Yamamoto, K.Hatakeyama, "Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold", Applied Physics Letters, 102, pp. 181904-1 – 4, 2013.

実験例:*ɛ_{av}*≈1を用いる全透過構造(マイクロ波帯)

岩井通、山本真一郎、畠山賢一、"金属格子と誘電体積層構造の反射透過特性"、電子情報通信学会論文誌B, Vol.J95-B, No.3, pp.488-492, 2012.

例5: ミリ波レーダ帯域では全透過特性、1GH以下では遮へい材の構造例

畠山賢一, 蔦岡孝則, "人工材料を用いる電波吸収体·電磁遮へい材", 電子情報通信学会論文誌B, Vol.J100-B, No.3, pp.127-137, 2017.

例6: 高誘電率材を全透過にするミリ波帯設計例

高誘電率材:反射を押さえ,全透過にするために薄くする(全透過条件①) 支持誘電体と積層すると全透過にならない ____ 人工誘電体と積層して *ε_{av}*≈1にすれば全透過特性が得られる

自動車ミリ波レーダの偏波 45°直線偏波、円偏波-TE波とTM波の和

TE,TM両偏波で透過特性がよいことが望まれる

全透過の条件

① $d \approx 0$ のとき、② $d \hbar \lambda/2$ の倍数のとき、 ③ $Z \approx Z_0(\varepsilon_r \approx \mu_r)$ のとき ④入射角がブリュースター角のとき

斜め入射における等価的な媒質内波長 λ_{θ}

$$\gamma_{\theta} = \gamma \cos\theta_t = j \frac{2\pi}{\lambda_0} \sqrt{\varepsilon_r \mu_r} \cos\theta_t = j \frac{2\pi}{\lambda_{\theta}} \quad \cdot \ \lambda_{\theta} = \frac{\lambda_0}{\sqrt{\varepsilon_r \mu_r} \cos\theta_t}$$

斜め入射における半波長厚み:入射角により変化

半波長厚み $\theta_i=0[\text{deg}] \rightarrow d=1.25\text{mm}$ $\theta_i=45[\text{deg}] \rightarrow d=1.39\text{mm}$ $\theta_i=60[\text{deg}] \rightarrow d=1.49\text{mm}$

②と④を併せて全透過構成

 $\begin{array}{c}
x \\
y \\
\theta_{r} \\
\theta_{i} \\
\varepsilon_{0}, \mu_{0} \\
Z_{0}, \gamma_{0} \\
\end{array}$ $\begin{array}{c}
z = 0 \\
\varepsilon_{0} \\
\mu_{0} \\
\mu_{r} \\
Z_{0}, \gamma_{0} \\
\end{array}$ $\begin{array}{c}
\varepsilon_{0}, \mu_{0} \\
\varepsilon_{0}, \mu_{0} \\
Z_{0}, \gamma_{0} \\
\end{array}$

演習(1) 単層構造の反射・透過特性と全透過 - 全透過条件①,②の演習-

使い方

- 1. IOtopの入力部に、厚みd[mm]、比誘電率実数部Re(ε_r)、虚数部Im(ε_r)、導電率 σ [S/m]を入力。 ε_r , 'は負~正の値を入力、 ε_r ,''は負の値を入力、誘電率虚数部は、 ε_r ,''と σ の寄与分の合計になる。
- 2. 入力した値に基づいて、MainでT, Γが計算される。結果はIOtop下段に表示。
- 3. 誘電体の場合はσ=0を入力、導電材の場合はσ[S/m]を入力。

演習(2) 誘電体/周期穴金属板/誘電体の全透過構造 ー全透過条件③の演習ー

使い方

- 1. IOtopの入力部に、誘電体のRe(ε_r)、Im(ε_r)、Re(μ_r)、Im(μ_r)、厚みd[mm]を入力。
- 2. IOtopの入力部に、周期穴金属板の半径a [mm]、穴周期Δx [mm](=Δz)、厚みt[mm]を入力
- 3. IOtopの周期穴金属板の比誘電率が、設計周波数で所用の値になるようにa、Axを設定
- 4. 入力した値に基づいて、MainでTが計算される。結果はIotopに表示。

例1 周期穴金属板を用いた3層全透過構造例,p.44

設定 (周期穴金属板両側のPETフィルムは省略)

	入	力セ	ル				
誘電体板			設計周波数 <i>fd</i> [GHz]				
Re(Er)	Im(ɛr)	Re(µr)	Im(µr)	d[mm]		7	
7.000	0.000	1.000	0.000	2.800			
					_	7	2-1-++
周期穴金属板				・人力は太梓(
a[mm]	$\Delta x (=\Delta z) [mm]$		t[mm]			\sim Im(εr), Im	
5	12		0.012				•
					設定不道	適切内容	
					(1):2a	$\Delta \mathbf{x}$	
			(2): $\Delta x > \lambda$				
				(3):2a> λ			

3

5

4

6

10

11 12 13

- 5. 電磁遮へいの考えかたと遮へい材設計法
- 5.1 電磁遮へい材モデルと電磁遮へい手法

遠方界、近傍界の空間領域と周波数

*ミリ波レーダ帯域では、近傍界は発生源の極近傍(半径0.6mm以内)であるから、近傍界領域の考慮は実際上しなくてよい場合が多い。 *大電力機器の筐体は、近傍界領域の磁界遮へいを担う場合が多い。

整合条件を満たす ε_r 、 μ_r を有する組成物の定め方

