大規模データの可視化・分析環境の 構築と展開

Kenji ONO

Advanced Visualization Research Team

Advanced Institute for Computational Science, RIKEN

ISSUES AND DIRECTION

- Effective use of huge computational resources
 - Capacity computing
 - Exploration of design space
 - Uncertainty quantification
 - Parameter sweep
 - Capability computing
 - Ultra-short turnaround simulation
 - Many trials Organization of prjects Handling of large-scale data Automation

ISSUES OF VISUALIZATION FOR LARGE-SCALE DATASET

- Large-scale parallel simulation
 - Numerous, distributed files
 - \Rightarrow Scalable algorithm
 - File handling
- We can't move / copy data files
 - \Rightarrow Remote visualization
- Trials and errors
 - To find best parameters for vis.
 - \Rightarrow Interactivity

- Various vis. scenarios
 ⇒ Customizable
- Various computer environments
 ⇒ Multi-platform
- Long term support
 - Less dependency for arch.
 - \Rightarrow Use recent technology

ISSUES OF SOFTWARE DEVELOPMENT

- Selection of parallelism
 - Sort-first / -middle / -last
- Selection of rendering API
 - OpenGL or C or others
- Support architectures
 - Intel, AMD, FX/K, ARM, mobile,...
- Software life cycle and maintenance for new architectures
 - FX/K, coming Exa. machines

HIVE

- HIVE offers multiple visualization scenarios to users
 - { Parallel, Remote, Interactive } visualization
- Web-based architecture => Ubiquitous
 - Interactive exploration of visual parameters and layout
- Multi-platform
 - K-Computer, Intel Cluster, PC,...
 - Linux, Windows, Mac

EXAMPLES

Effect of sub-surface scattering

Resolution of 4096 x 4096 pixels, Asian Dragon

HIGH RES. RENDERING IMAGE

SOFTWARE STACK OF HIVE

SURFACE

- Scalable and Ubiquitous Rendering Framework for Advanced Computing Environment
 - An software implementation of high performance ray tracer
 - Sort-Last Parallel Rendering
 - OpenGL ES 2.0 compatible API

Portable Devices

(top

/isualization

Clusters

upercomputers

X86, SPARC64, ARM64 CPUs / GPUs

HIVE APPLICATION

HIVE composes of 3 components

HRENDER

- Wrapper app. of SURFACE and data I/O
- Command line module

WEB-BASE APP. ON HRENDER

Scene Node Editor

Tools for describing Scene file

) local obj = OBJLoader() objLoad('bunny obj) local model = PolygonModel() local meshdata = objMeshData() model Creat(meshdata) model SetShader('normal frag') local analy Execute(model) print(analy MinX()) print(analy MinX())

60

render {camera, model}

HIVE UI

Tools for making movie

SCENE NODE EDITOR

Enable us to construct rendering pipeline flexibly

MORE

SHADER PROGRAM

GL Shading Language

• Users can add their own codes for special purpose rendering

▼ Debug				
8		-	+	frameno
Transfer fund	ction param			
-1.000			tf_bmin	
10.000				tf_bmax
8.618			tf_opacity	
0.00210			ray_step	
0.00000	0.000000	1.000000		cut_plane
	0.000			cut_plane_dist
enable_cu	t_plane			
8.000				contour_min
10.000				contour_max
0,100				contour_step
0.010			contour_border	

#extension GL_LSGL_trace : enable
#extension GL_OES_texture_3D : enable

#ifdef GL_ES
precision mediump float;
#endif

uniform sampler3D tex0; uniform vec2 resolution; varying float matID; varying vec3 mnormal; uniform vec4 color;

```
uniform vec3 volumescale;
uniform vec3 volumedim;
uniform vec3 offset;
uniform vec3 eye;
uniform vec3 lookat;
uniform vec3 up;
```

```
void main(void)
{
    vec3 p;
    vec3 n;
    vec3 dir;
```

```
vec3 dir;
isectinfo(p, n, dir);
vec3 rayorg = eye;
```

```
vec3 raydir = p - eye;
```

```
vec3 texpos = (p - offset) / volumescale + 0.5; // [0,
1]^3
vec4 dens = texture3D(tex0, texpos);
```

```
gl_FragColor = vec4(normalize(dens.xyz), 1.0);
return;
```

RENDERING BY DIFFERENT SHADER

OTHER EXPRESSION

EXAMPLE OF HURRICANE DATASET

OFF-LINE RENDERING OF PDB DATA

Data :

http://www.rcsb.org/pdb/explore.do?structureId=1mt5 Only Atom, 1M Renderig point primitives with Lambert shader and ray casting

Almost same image

Result on Intel PC

Result on K

MULTI CAMERA SCENARIO

• Script allows us to describe more than one scenario

DEVELOPMENT IN THE FUTURE

- High-Performance Vis.
 - In-Situ
 - Vis for Parallel in Time method
 - Vis for Capacity Computing
- Analytics
 - Parallel Coordinate
 - Fiber
- User-Interface
 - Different view like a stand alone application

STRATEGY FOR INTERACTIVITY AND SCALABILITY

of Cores

PARALLEL SORT-LAST RENDERING

BINARY-SWAP BASED METHOD

Keep busy in all nodes Scale out, but only for power of two

Preconditioned BS to avoid the limitation of power of two

Thank you !

