
Kenji ONO

Advanced Visualization Research Team

Advanced Institute for Computational Science, RIKEN

大規模データの可視化・分析環境の
構築と展開

ISSUES AND DIRECTION
• Effective use of huge computational resources

• Capacity computing
• Exploration of design space
• Uncertainty quantification
• Parameter sweep

• Capability computing
• Ultra-short turnaround simulation

Many trials
Organization of prjects
Handling of large-scale data
Automation
…

Geometry
Data

Pre-
process

Simulation /
In-situ

processing

Post-
processing

Database /
V & V

Feedback

Simulation
Process

ISSUES OF VISUALIZATION FOR LARGE-SCALE
DATASET

• Large-scale parallel simulation

• Numerous, distributed files

⇒ Scalable algorithm

File handling

• We can’t move / copy data files

⇒ Remote visualization

• Trials and errors

• To find best parameters for vis.

⇒ Interactivity

• Various vis. scenarios

⇒ Customizable

• Various computer environments

⇒ Multi-platform

• Long term support

• Less dependency for arch.

⇒ Use recent technology

3

ISSUES OF SOFTWARE DEVELOPMENT
• Selection of parallelism

• Sort-first / -middle / -last
• Selection of rendering API

• OpenGL or C or others
• Support architectures

• Intel, AMD, FX/K, ARM, mobile,…
• Software life cycle and maintenance for new architectures

• FX/K, coming Exa. machines

HIVE
• HIVE offers multiple visualization scenarios to users

• { Parallel, Remote, Interactive } visualization
• Web-based architecture => Ubiquitous

• Interactive exploration of visual parameters and layout
• Multi-platform

• K-Computer, Intel Cluster, PC,…
• Linux, Windows, Mac

EXAMPLES

Resolution of 4096 x 4096 pixels, Asian Dragon

Effect of sub-surface scattering

HIGH RES. RENDERING IMAGE

SOFTWARE STACK OF HIVEソフトウェアスタック概要
KVS (redis or mongoDB)

websocket/REST(C++)

HIVE Renderer(C++)

SURFACE(C++)
[Raytracer]

Lua(C)
Scene file(Lua)

node.js server(js)

OpenMP

Loader Builder

libcio,
libcpm,
…

Image / SceneCommand(Lua) / Parameter(Json)

Browser UI(js)
CSSUI JS

socket.io(js)

node-redis with hiredis(js)

GLES
Open
GL

standalone mode

MPI
HIVE = SURFACE

+ Functions of visualization + UI

SURFACE

9

• Scalable and Ubiquitous Rendering Framework for Advanced
Computing Environment
• An software implementation of high performance ray tracer

• Sort-Last Parallel Rendering

• OpenGL ES 2.0 compatible API

X86, SPARC64, ARM64 CPUs / GPUs

Mobile and
Portable
Devices

Desktop
PCs

Visualization
Clusters

Supercomputers

HIVE APPLICATION

hrender

Scene Node Editor

HIVE UI

standalone renderer

web interface node editor

web interface animation editor

SURFACE
raytracing library

HIVE composes of 3 components

コマンドラインで動作し、並列処理（スレッド並列
、プロセス並列）に対応

webインターフェイスを用いた可視化ユーザインタ
ーフェースで、hrenderをコールして処理を実施

Rendering by command line

$ cd $HIVE/hrender/test
$ mpirun -np 1
../../build/bin/hrender
render_obj.scn

HRENDER
• Wrapper app. of SURFACE and data I/O
• Command line module

SURFACE

command line

Scene file (parameter)

Data I/O

Data Loader
xDMlib

Data Exporter
Chowder

Parallel Processing
MPI
OpenMP

Interactive
Batch Job

Web-based HIVE UI

hrender

WEB-BASE APP. ON HRENDER
Scene Node Editor HIVE UI

・・
・ ffmpeg

Tools for making movie

Tools for describing
Scene file

SCENE NODE EDITOR

output.jpg

scene.scn
hrender

Enable us to construct rendering pipeline flexibly

Movie file

MORE

SHADER PROGRAM

#extension GL_LSGL_trace : enable
#extension GL_OES_texture_3D : enable

#ifdef GL_ES
precision mediump float;
#endif

uniform sampler3D tex0;
uniform vec2 resolution;
varying float matID;
varying vec3 mnormal;
uniform vec4 color;

uniform vec3 volumescale;
uniform vec3 volumedim;
uniform vec3 offset;
uniform vec3 eye;
uniform vec3 lookat;
uniform vec3 up;

void main(void)
{
vec3 p;
vec3 n;
vec3 dir;
isectinfo(p, n, dir);

vec3 rayorg = eye;
vec3 raydir = p - eye;

vec3 texpos = (p - offset) / volumescale + 0.5; // [0,
1]^3
vec4 dens = texture3D(tex0, texpos);

gl_FragColor = vec4(normalize(dens.xyz), 1.0);
return;

}

GL Shading Language
• Users can add their own codes for

special purpose rendering

RENDERING BY DIFFERENT SHADER

Polygon Line

Point Volume

Volume-VectorArrow

VectorArrow(Normal)

OTHER EXPRESSION
Contour, fringe

• シェーダで実現

• 線の太さ, 色を補間するかしないかなど, シェーダパラメータで調整

• Jet SPH の断面を contour

• レイトレーシングで正確に等幅(等ピクセル数)で等高線を描画は難
しい.

• => ポストプロセスでの対応も検討

Ray Tracing NPR-Style Feature Lines

Tuesday, March 10, 15

Contour, fringe
• シェーダで実現

• 線の太さ, 色を補間するかしないかなど, シェーダパラメータで調整

• Jet SPH の断面を contour

• レイトレーシングで正確に等幅(等ピクセル数)で等高線を描画は難
しい.

• => ポストプロセスでの対応も検討

Ray Tracing NPR-Style Feature Lines

Tuesday, March 10, 15

EXAMPLE OF HURRICANE DATASET

OFF-LINE RENDERING OF PDB DATA

Result on Intel PC

Data :
http://www.rcsb.org/pdb/explore.do?structureId=1mt5
Only Atom, 1M
Renderig point primitives with Lambert shader and ray casting

Result on K

Almost same image

MULTI CAMERA SCENARIO

camera-1camera-0

• Script allows us to describe more than one scenario

Camera-2.jpg Camera-0.jpg Camera-1.jpg

Camera-1

Camera-2

Camera-0

DEVELOPMENT IN THE FUTURE
• High-Performance Vis.

• In-Situ
• Vis for Parallel in Time method
• Vis for Capacity Computing

• Analytics
• Parallel Coordinate
• Fiber

• User-Interface
• Different view like a stand alone application

STRATEGY FOR INTERACTIVITY AND
SCALABILITY

Ti
m
e

#	of	Cores

File	I/O

Rendering

Image	compositing

Multicore rendering	/	
HW	rendering

Parallel	I/O
LOD	
Data	reduction

Efficient	Image	
Composition

PARALLEL SORT-LAST RENDERING
Computational
Domain Decomposition

Subdomains

Generate image

Gathered images

Image composition

2-3-4 Decomposition Method
for Large-Scale Parallel Image Composition

with Arbitrary Number of Nodes

Jorji Nonaka
RIKEN Advanced Institute
for Computational Science

Kobe, Japan
jorji@riken.jp

Chongke Bi
RIKEN Advanced Institute
for Computational Science

Kobe, Japan
bichongke@riken.jp

Kenji Ono
RIKEN Advanced Institute
for Computational Science

Kobe, Japan
keno@riken.jp

Masahiro Fujita
Light Transport

Entertainment Inc.
Tokyo, Japan

syoyo@lighttransport.com

Abstract—Visual data exploration helps users to get better
insight into their data and has been considered an indispensable
tool for computational scientists. Sort-last parallel rendering
is a proven approach for large-scale scientific visualization,
however it requires a costly parallel image composition at
the final stage. Since it requires interprocess communication
among the entire nodes it usually dominates the total cost
of a parallel rendering process. Efficient image composition
algoritms for power-of-two (2n) number of nodes have already
been proposed so far, however when handling non power-of-two
number of nodes, an additional processing is required causing
performance penalty. The simplest way is to execute this addi-
tional processing in the initial stage or in parts during the entire
parallel image composition process. The latter approach causes
less performance penalty, however since it adds performance
penalty at every stage of parallel image composition, thus it
can suffer in a large-scale image composition where tens, or
even hundreds, of thousands of nodes can be involved. In this
paper, we propose a decomposition approach, for non-power-
of-two number of nodes, named 2-3-4 Decomposition. It works
by generating exactly power-of-two number of groups of 2, 3 or
4 nodes. Therefore, by compositing independently each of these
groups, at the end, we will obtain a power-of-two number of
nodes making it easy to combine with any of the existing image
composition algorithms for power-of-two number of nodes. It
works as a pre-processing and the performance penalty is
limited to the overhead of compositing three or four images.
This performance penalty can be further reduced depending
on the image compositing algorithm to be applied in the next
stage. Our experimental results have shown promising results
making this method a potential candidate for large-scale image
composition with arbitrary number of nodes.

Keywords–scientific visualization; parallel rendering; parallel
image compositing; RIKEN K Computer

I. INTRODUCTION

Scientific visualization has been playing an important
role in computer-aided scientific discovery by extracting
meaningful information from huge amount of data such as
those generated from numerical simulations [1]. The size
and complexity of data sets generated from numerical simu-
lations have increased at a comparable rate of computational
power and network bandwidth of high-end HPC systems.
Therefore the traditional approach for transfering data to a

more graphics capable hardware systems for visualization
and analysis has become costly and sometimes prohibitive.
More recently, the execution of visualization process uti-
lizing the same platform used for numerical simulation
has gained popularity and is currently known as in-situ
visualization [2], [3]. In such environment with large number
of nodes, sort-last parallel rendering [4], shown in Figure 1,
has proven effective. Most of parallel rendering algorithms
are embarrassingly parallel in nature, however the images
generated at each rendering node should be composited
together to generate the final image, as a kind of a collective
global reduction operation requiring intensive interprocess
communication.

Several image composition algorithms have been pro-
posed so far, and according to [1], the fundamental image
composition algorithms can be grouped into three main cat-
egories: Direct Send [5], [6], Parallel Pipeline [7], and Tree
which includes Binary-Swap [8]. As noticed in [1], pipeline
methods are seldom found in practice. These methods differ
in the number of stages and how they communicate with
each other, at each stage, by exchanging pixel information
to composite the images. Recently proposed image composi-

Figure 1: Sort-last parallel rendering pipeline.

BINARY-SWAP BASED METHOD
Journal of Information Processing Vol.0 No.0 1–8 (??? 1992)

([FKDQJH([FKDQJH([FKDQJH([FKDQJH
DQGDQGDQGDQG
%OHQG%OHQG%OHQG%OHQG

Binary-Swap Image Composition
0 1 2 3

0 2 1 3

6WDJH6WDJH6WDJH6WDJH
����

*DWKHU*DWKHU*DWKHU*DWKHU

6WDJH6WDJH6WDJH6WDJH
����

Reduced Binary-Swap

Binary-Swap
Stage 0

Telescope Binary-Swap

2-3-4 Composition Binary-Swap

Binary-Swap
Stage 2

Binary-Swap
Stage 1

Fig. 2: Binary-Swap image composition method and some extensions for handling arbitrary number of nodes.

Swap methods. In the specific case of Binary-Swap, as shown
in Figure 2, there are other methods where arbitrary number of
nodes can be converted to power-of-two number of nodes such
as Reduced Binary-Swap [26] and 2-3-4 Composition Binary-
Swap [15] showing the great potential of Binary-Swap in a mas-
sively parallel environment. Therefore, in this paper, we focused
in this Binary-Swap method.

3. Binary-Swap Image Composition
Binary-Swap image composition, as shown in Figure 2, works

in stages by exchanging portions of image data between pairs of
composition nodes, and keeps every node busy during the entire
image composition process. Although it requires exactly power-
of-two number of nodes, there already exists some techniques for
handling arbitrary number of nodes such as the three (Reduce,
Telescope and 2-3-4 Composition) listed in the aforementioned
figure. Considering m as the converted power-of-two (2n) num-
ber of nodes, Binary-Swap will require exactly log2m stages for
image data exchanging and blending. At the end, each composi-
tion node will possesses a portion of the final image which should
be gathered in order to generate the final image. The image data
here is treated as 1D vector of pixels(p), and is recursively di-
vided into two parts. In order to optimize the communication
process, it slightly differs from the original approach [11] where
the image data was treated as 2D data, and successively divided
in horizontal and vertical manner. The communication distance
between pairs doubles at each stage, and this peculiar commu-
nication pattern will distribute the final composited images in a
non-sequential manner. In addition, if the number of pixels (p)

is divisible by the number of nodes (m = 2n), then the size of
the image portion will be equal. On the contrary, as an example
shown in Figure 3, where p = 13 is not divisible by (m = 8), a
non-uniform data distribution will occur. Because of these, the
MPI Gatherv collective communication has been used for the fi-
nal image gathering.

EVEN
(4)

EVEN
(2)

EVEN
(2)

EVEN
(6)

ODD
(3)

ODD
(3)

ODD
(5)

EVEN
(2)

ODD
(3)

6 (Node 0)

7 (Node 1)

3 (Node 0)

4 (Node 3)

1
2
1
2
1
2
2
2

Stage 1 Stage 2

Stage 3

Example

13

Node 0
Node 4
Node 2
Node 6
Node 1
Node 5
Node 3
Node 7

3 (Node 2)

3 (Node 1)

3 (Node 0)

4 (Node 3)

3 (Node 2)

3 (Node 1)

Nodes
0, 1, and 2

Nodes
3, 4, 5, 6 and 7

Stage 2

(EVEN + 1)

Fig. 3: Three possible image data subdivision patterns and an ex-
ample of non-uniform image data subdivision.

c⃝ 1992 Information Processing Society of Japan 3

Keep busy in all nodes
Scale out, but only for power of two

Preconditioned BS to avoid the
limitation of power of two

Thank you !

