第20回 ビジュアリゼーションカンファレンス

講演1-3

スーパーコンピュータを用いた 大規模粒子法解析とその可視化

室谷浩平

東京大学大学院工学系研究科 システム創成学専攻

場所:タイム24 日時:2014年11月7日 15:30-16:10 (40分)

MPS法によるダムブレイク解析

格子法と粒子法

- 格子法:オイラー式記述
 - 空間に固定された点での物理量の変化を追う.
 - **FDM**, FVM, FEM

- 粒子法:ラグランジュ式記述
 - 粒子の動きを追う.
 - 移流項がない.
 - □ 空間微分の離散化が問題.
 - □ MPS法, SPH法, PIC法

粒子法の得意なこと苦手なこと

- 得意なこと
 - □ 大きな変形や不連続面を特別な処理なく扱える.
 - 移動するもの同士の相互作用の扱いが容易である。
 - □ 接続関係(メッシュ)が不要であるのでモデル作りが容易である.
- 苦手なこと
 - □ 空間微分(連続的な場)を定義するのに工夫が必要である.
 - 弱形式にすると空間積分が必要になるので、空間分割(メッシュ)が必要になる。
 - □ 境界を明確に定義することが苦手である.
 - 現状では、解析領域に粗密をつけることが難しいので、体積に比例した粒子数が必要である。

支配方程式:ナビエスストークス方程式

連続の式

運動方程式
$$\frac{d\vec{v}}{dt} = -\frac{1}{\rho}\nabla P + \nu\Delta\vec{v} + \vec{g}$$

動的負荷分散

色は各計算ノードのランク番号に対応

バケットベースの領域分割と通信方法

動的負荷分散

津波解析の目的

- 1. 津波が市街地を遡上する解析
- 2. 浮遊物がながれ、浮遊物同士や地上構造物に衝突する解析
- 3. 水圧と浮遊物の衝突による地上構造物の応力解析

第1の解析:震源で発生する波源から沿岸部までの津波伝播計算(数十~数百キロ四方程度)

第3の解析:市街地に浮遊物が衝突しながら 浮遊する市街地浸水解析(500m四方程度)

3ds Maxによる可視化

第2の解析:沿岸部に押し寄せた津波が地上へ遡 上する解析 (数km~10km四方程度)

3ds Maxによる可視化

航空写真: Copyright@NTT空間情報 All Rights Reserved. 動画制作: プロメテック・ソフトウェア

TSUNAMI-Kによる東日本大震災による津波解析

初期水位

Fujii, Y., Satake, K., Sakai, S., Shinohara, M. and Kanazawa, T., "Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake", *Earth Planets Space*, Vol.63, (2011)

- 多数の浮遊物が漂流する解析を行う.
- 浮遊物は剛体としてモデル化する.
- 剛体-流体の弱連成問題を解く.

流体-剛体連成(弱連成)

① 全粒子を流体粒子として計算する.

② 剛体の並進量と回転量を求める.

③移動前の剛体粒子に対して、剛体の並進量と回転量を加える、

流体-剛体連成の通信

- 総和計算の部分だけ,通信(全体通信)が発生する.
- 移動後の重心,並進量,回転量の3つのベクトルを求める時に総和計算が行われる.
- 移動後の重心と並進量は同時に通信(全体通信)できるが、回転量は移動後の重心を用いて計算 されるので、2回に分けて通信(全体通信)が行われる。
- 例えば、100個の剛体の場合、8(size of double)x6x100 byteと8(size of double)x3x100 byteの2回の 通信(全体通信)が行われる.
- 通信量(全体通信量)は少ない.

4つの計算モデル

Model	Stage	Area	Buildings	Floating objects
A	Second	10.5km×10km	Non	Non
В	Second	4.5km×3km	Non	Non
C	Third	400m×550m	Modeling	Two (Tanks)
D	Third	660m×810m	Modeling	431(Building)

Model A

Model B

Model C

Model D

Model A in 2nd stage: 石巻湾沿岸の広範囲津波 遡上解析

- 粒子直径: 2m
- 解析領域:10.5km×10.0km
- 解析時間: 2000sec (33min)
- dt : 0.01s (or Courant number 0.1)

- 東京大学FX10 (Fujitsu Sparc)
 120 nodes (1920 cores) MPI + OpenMP
 最大粒子数: 1.3億
 計算時間: 3 days
- 1 time step (average): 2.4 sec

ParaView 流体: Points, Opacity 0.5 陸地: Surface, Opacity 1.0

MPS法と浅水長波方程式による差分法の 計算結果の比較

MPS法 (粒子直径2m)

構造計画研究所の Tsunami-Kによる結果

Model B in 2nd stage : 3rdステージ解析のための流 入境界条件を作成するための解析

- 粒子直径: 1m
- 解析領域: 4.0km×3.5km
- 解析時間:800sec
- dt : Courant number=0.1

- 東京大学FX10 (Fujitsu Sparc)
- 144 nodes (1024 cores) MPI+OpenMP
- 最大粒子数: 2.6 億
- 計算時間: 1 weak
- 1 time step (average): 5.5 sec
- Time of domain decomposition (average) : 60 sec

浮遊物のある石巻市街地津波解析

浮遊物のある石巻市街地津波解析

浮遊物となるタンク

Model C in 3rd stage: 2つのタンクが市街地を漂流 する解析

- 粒子直径: 0.2m
- 解析領域: 400m×550m
- 解析時間: 200sec
- dt : Courant number=0.1
- Two tanks are released at 60 sec

- 九州大学CX400 (Intel Xeon)
- **32 nodes** (512 cores) MPI+OpenMP
- 最大粒子数: 4.0 億
- 計算時間: <u>30 days</u>
- 1 time step (average): 8.2 sec
- Time of domain decomposition : 62 sec

ParaView

流体: Points, Opacity 0.5 陸地と構造物: Surface, Opacity 1.0

Model D in 3rd stage : 431つの浮遊物が市街地 を漂流する解析

- 粒子直径: 0.5m
- 解析領域: 660m×810m
- 解析時間: 400sec
- dt : Courant number=0.1
- All buildings are released at 200 sec

- 九州大学CX400 (Intel Xeon)
- 72 nodes (1152 cores) MPI+OpenMP
- 最大粒子数: 80 millions
- 計算時間: 40 hours
- 1 time step (average): 0.78 sec
- Time of domain decomposition (average): 4 sec

ParaView 流体: Points, Opacity 0.5 陸地と構造物: Surface, Opacity 1.0

石巻市街地のメッシュモデル メッシュサイズ2m

第3の解析: 地上構造物に線形応力解析を行った市街地浸水解析

- ■名古屋大学CX400 (Intel Xeon)
- 32 nodes (768 cores) MPI+OpenMP
- 流体解析: 4000万粒子(0.5m) by 分散並列MPS陽解法
- 構造解析: 100万要素(2m) by ADVENTURE_Solid v1.21
- 連成方法: 流体圧力を構造に渡す片方向連成

ParaView 流体: Points, Opacity 0.3 陸地と構造物: Surface, Opacity 1.0

可視化について

ソフトウェア	可視化 オブジェクト	HW/SW レンダリング	データ部の 格納方法	可視化自由度 (5∶高→1∶低)
DaraViou	Points (立方体)	HW	Compressed binary (zip)	3
Paraview	Point Sprite (テクスチャー球)	HW	Compressed binary (zip)	3
	Sphere (球)	SW	ascii	4
РОУ-Кау	Marching Tetra (ポリゴン分割)	SW	ascii	4
Encight	Dot (点)	SW	binary	1
Ensignt	Sphere (ポリゴン分割)	SW	binary	2
AVS	Point Sprite (テクスチャー球)	HW	binary	5
	Set Radius (テクスチャー球)	SW	binary	5

POV-Ray / Sphere

圧力分布

POV-Ray / Sphere

津波解析

- 粒子数:1億
- 総ファイル数:800
- 1ファイルサイズ:6GB
- 総ファイルサイズ:5.5TB

可視化

- Xeon X7460 2.66GHz, 128GB)
- 可視化1枚48分
- 最大利用メモリ: 94GiB

POV-Ray / Marching Tetra

POV-Ray / Marching Tetra

POV-Ray / Marching Tetra

並列

計算ノードに割り当てられた粒子

2400万三角形でデータが大き過 ぎてPOV-Rayでメモリ不足(32GB)

ParaView

Milkcrown解析

粒子直径(mm)	粒子数	計算時間	ノード数(名大FX10)
0.2	37万	1.7 h	12
0.1	450万	22.2 h	12
0.05	3000万	49.0 h	48

時間 0.06 s

JHPCN-DFによる圧縮

萩田先生@防衛大, JHPCN採択課題 課題番号jh140004-NA02の研究紹介ポスターより

http://jhpcn-kyoten.itc.u-tokyo.ac.jp/ja/docH26/Poster/jh140004-NA02_Poster.pdf

ParaView

JHPCN-DFの圧縮率

石巻市市街地解析 粒子数: 17,452,924 影響半径: 0.5m 出力ファイル: 1,828MB ミルククラウン解析 粒子数: 10,032,069 影響半径: 0.05mm 出力ファイル:851MB

100.0 100.0 100.0 可視化に使う Ishinomaki 80.0 値だけをfloat Milkcrown 型に変換 60.0 40.0 15.3^{18.9} 13.1^{16.6} 20.0 8.2 10.8 5.9 8.1 3.3 4.9 0.0 Allow Error Original non jhpcn-df non jhpcn-df 0.0001 0.01 0.001 非圧縮 圧縮 圧縮 圧縮 圧縮 zip(level5) 良 良 良 良 可視化品質 不良 109MB, 69MB 1,828MB, 851MB

ParaView

JHPCN-DFの圧縮率

石巻市市街地解析 粒子数: 17,452,924 影響半径: 0.5m ミルククラウン解析 粒子数: 10,032,069

影響半径: 0.05mm

出力ファイル:851MB

出力ファイル: 1,828MB

JHPCN-DF なし

Allowerr = 0.001

Allowerr = 0.0001

JHPCN-DF なし

Allowerr = 0.001

Allowerr = 0.0001

JHPCN-DF なし

Allowerr = 0.001

Allowerr = 0.0001

JHPCN-DF なし

Allowerr = 0.001

Allowerr = 0.0001

Ensight / Dot

影響半径: 0.05mm 3000万粒子

影響半径: 0.05mm 3000万粒子

影響半径: 0.05mm 3000万粒子

影響半径: 0.05mm 3000万粒子

名古屋大学情報基盤センター 高精細可視化システム SGI UV2000

■ 共有メモリマシン

- □ 1280コア(8core x 160socket)
- 20TBメモリ
- 豊富な可視化ソフトウェア
 - AVS Express 8.2 Developer/PCE
 - Ensight gold 10.0.3(g)
 - ParaView 3.14.1 64-bit
 - POV-Ray 3.7.0
- リモートディスクトップ
 - VNC (Virtual Network Computing)

1フレーム描画するのにかかる時間

0s : スムーズ 1s : パラパラ 2s : カクカク

名大UV2000(スパコンの大容量ファイルシステム /large/USER)

₩ <u>,</u> , , , , , , , , , , , , , , , , , , 	Ensight			ParaView		AVS
松丁釵	Dot	Sphere 4	Sphere 10	Points	Point Sprite	Point Sprite
37万	2s	10s	12s	2s	1s	1s
450万	7s	10分以上	х	8s	2s	3s
3000万	35s	х	х	75s	9s	16s

名大UV2000(UV 専用ファイルシステム /data/usr/GROUP/USER)

₩ <u>,</u> , , , , , , , , , , , , , , , , , , 	Ensight			ParaView		AVS
松丁釵	Dot	Sphere 4	Sphere 10	Points	Point Sprite	Point Sprite
37万	1s	5s	7s	1s	Os	Os
450万	3s	10分以上	x	7s	1s	2s
3000万	35s	x	x	43s	8s	12s

Local PC

火井 <u>マ</u> 米 ケ	Ensight			ParaView		AVS
松丁釵	Dot	Sphere 4	Sphere 10	Points	Point Sprite	Point Sprite
37万				Os	Os	Os
450万				1s	1s	1s
3000万				6s	2s	6s

マルチプラットホーム大規模高精細可視化ライブラリ LexADV_VSCGによるオフラインソフトウェアレンダリング

- これまでは、8TBのバイナリデータ を九州一東京間でインターネットを 用いたデータ転送に1ヶ月かかって いた。
 - LexADV_VSCGライブラリを用いれば, 10万×10万ピクセルを超える 高解像度画像をスパコン上で作成 することができる.
- LexADV_VSCGを利用したオフライン領域分割並列可視化ライブラリ LexADV_WOVisがある.
 - LexADV_VSCGは依存ライブラリが 数学関数のみであることから、将 来を含めた多様な計算機環境で動 作することが可能である.

"LexADV" Software Release!

http://adventure.sys.t.u-tokyo.ac.jp/lexadv/

, and a runnercal Library base	d on Hierarchical Domain Decomposition	n for Post Petascale Simulation	
HDDM Library for Support System G	Post PetaScale Computing	News	
Book developing an open source system Copyright & 2014 HOLDORPS	Index analysis of projections INSL for Continuum Mechanics Pathamane to accelerator Pathamane to accelerator Pathamane to accelerator Pathamane to accelerator Pathamane ADVENTURE, which is a generat- or can semulate a stores scrate analysis movies using	3 modules are released 23May/2014 The HODMPPS project is pleased to announce the first beta release of 3"usADU" modules Toby, we released these 3 modules • LexADV_VSCO of the rendering library • LexADV_VSCO of the rendering library • LexADV_VSCO of the rendering library • LexADV_VSCO of the rendering library 23May/2014	

Free and open source scientific libraries for exascale simulation

TryDDM	DDM-based linear equation solver library
EMPS	Explicit MPS solver framework
VSCG	Ultra-high-resolution scientific visualization library
WOVis	Parallel offline surface rendering tool with VSCG